Archivo de categorías: MeaningCloud

Esta categoría agrupa los distintos aspectos de MeaningCloud que se tratan en el blog.

Grabación del webinar: Por qué necesitas Deep Semantic Analytics

El pasado día 12 de julio celebramos nuestro webinar “Por qué necesitas Deep Semantic Analytics”, donde explicamos cómo automatizar la comprensión profunda de documentos complejos. Gracias a todos por vuestro interés.

En la sesión cubrimos estos puntos:

  • Comprensión automática de documentos no estructurados.
  • En qué consiste Deep Semantic Analytics. Comparación con la analítica de texto convencional.
  • Dónde se puede aplicar.
  • Caso práctico: proceso de due diligence.
  • Cómo debería ser una buena solución de Deep Semantic Analytics.
  • Roadmap MeaningCloud en Deep Semantic Analytics.

IMPORTANTE: En este artículo, puedes encontrar una explicación más narrativa de algunos de los temas que tocamos, incluyendo el caso práctico sobre due diligence.

¿Interesado? A continuación tienes la presentación y la grabación del webinar.

(This webinar was also delivered in English. Please find the recording here.)
Continuar leyendo


Por qué necesitas Deep Semantic Analytics (webinar)

Automatiza la comprensión profunda de documentos complejos

La Analítica de Texto convencional permite alcanzar un primer nivel de comprensión automática del contenido no estructurado, gracias a su capacidad para extraer menciones de entidades y conceptos, asignar categorías generales o identificar la polaridad de opiniones y hechos que aparecen en el texto. Sin embargo, estos elementos aislados de información no reflejan la riqueza informativa que proporcionan estos documentos e imponen limitaciones a la hora de encontrarlos, relacionarlos o analizarlos automáticamente.

Deep Semantic Analytics representa un paso más allá de la analítica de texto convencional al proporcionar prestaciones como la categorización granular a nivel de fragmento, la detección de patrones complejos y la extracción de relaciones semánticas entre los elementos de información del documento.

Continuar leyendo


Nueva Demo de Salud: etiquetado de medicamentos, síntomas, enfermedades y efectos adversos

Los documentos del dominio de la salud muestran un vocabulario y una estructura lingüística específicos. Si echamos un vistazo a las historias clínicas electrónicas (HCE), también denominadas historias clínicas informatizadas (HCI), vemos que también aparececen datos no estructurados (es decir, texto libre). Este texto libre contiene nombres extraños de medicamentos y enfermedades que son incluso difíciles de leer. Por todas estas razones, las técnicas de analítica de texto deben adaptarse al dominio de la salud. Hemos reunido una serie de recursos en una demo que muestra cómo MeaningCloud puede etiquetar nombres de medicamentos, síntomas, enfermedades, procedimientos, etc.

Accede a la demo gratuita: https://www.meaningcloud.com/health-demo

Continuar leyendo


¿Qué es Real World Evidence y por qué es importante?

Real World Evidence. Blurred image of a hospital

La Real World Evidence (o Real World Data), en el área de salud, se fundamenta en datos masivos recolectados de millones de pacientes en condiciones de la vida real, fuera del contexto de los ensayos clínicos. De este modo, más  allá de  la eficacia y las toxicidad de un tratamiento, se evalúa la a calidad de vida del paciente, la adherencia o  la capacidad de un paciente para hacer frente al coste del tratamiento. La analítica de texto es un componente esencial de de este área de conocimiento.

La austeridad y los recortes de precios relacionados con los medicamentos han puesto una presión sin precedentes en la industria farmacéutica. Se pide a los fabricantes que proporcionen información relacionada no sólo con la seguridad, el uso apropiado, y la eficacia, sino también sobre el valor clínico y económico de sus medicamentos.

Esta tendencia es global (no es solo un problema de España o de Europa) y es particularmente evidente en las áreas terapéuticas de alto costo (como la artritis reumatoide, la diabetes, y la oncología), donde se están introduciendo un gran número de nuevas y costosas terapias para el tratamiento de enfermedades crónicas.

Por otra parte, desde hace unos años disponemos de muchos nuevos datos (como las historias clínicas electrónicas) y herramientas analíticas sofisticadas que nos permiten extraer un valor considerable de ellos. Podemos evaluar los costes de las enfermedades,  la eficiencia de un tratamiento (sus costes, beneficios y riesgos), comparar la efectividad de tratamientos diversos o medir los resultados de las intervenciones a largo plazo.

Continuar leyendo


Grabación del webinar: Incorpora la analítica de texto más avanzada a tus modelos predictivos

El pasado día 26 de abril presentamos nuestro webinar “Incorpora la analítica de texto más avanzada a tus modelos predictivos”, en el que presentamos nuestra nueva Extensión MeaningCloud para RapidMiner. Gracias a todos por vuestro interés.

En la sesión cubrimos estos puntos:

  • Plataformas analíticas. Introducción a RapidMiner.
  • Analítica de texto. Introducción a MeaningCloud.
  • Combinando analítica de texto y datos. Extensión MeaningCloud para RapidMiner.
  • Demo caso práctico.
  • Escenarios de aplicación.
  • En qué se diferencia esta Extensión.
  • Roadmap de producto.

IMPORTANTE: En este tutorial, puedes encontrar los datos que analizamos durante el webinar, junto a los workflows y modelos que aplicamos.

¿Interesado? A continuación tienes la presentación y la grabación del webinar.

(This webinar was also delivered in English. Please find the recording here.)
Continuar leyendo


Ahora puedes usar MeaningCloud con RapidMiner

Extiende la analítica de texto con herramientas para crear los modelos predictivos más sofisticados

En MeaningCloud acabamos de lanzar una característica que permite incorporar nuestra analítica de texto a sofisticados modelos predictivos basados en datos estructurados. Nuestra nueva Extensión para RapidMiner permite incluir nuestros motores de análisis semántico como un bloque más dentro de los pipelines de proceso definidos en esta popular herramienta analítica.

RapidMiner es una plataforma open source para data science, reconocida como líder en el sector de herramientas de analítica avanzada. RapidMiner permite preparar datos, crear modelos predictivos, validarlos y embeberlos en procesos de negocio de una manera rápida y ágil.

Continuar leyendo


¿Qué es la voz del empleado (VoE)?

Voz del Empleado. Siluetas con burbujas que representan el diálogo

Conseguir empleados comprometidos se ha convertido en una prioridad  para muchas organizaciones en los sectores público y privado. Los programas de la Voz del Empleado (VoE) desempeñan un papel clave en esos esfuerzos, al permitir recolectar, administrar y actuar de manera sistemática sobre el feedback y las aportaciones de los empleados sobre una variedad de temas relevantes para la empresa.

La relación entre Engagement y Voz del Empleado es muy parecida  a la que existe entre la Voz del Cliente (VoC) y la Experiencia del Cliente. VoC proporciona las ideas que mejoran la experiencia del cliente. La Voz del Empleado tiene la misma función para el compromiso de los empleados. Ver: Voz del Empleado, Voz del Cliente y NPS

La Voz del Empleado recoge las necesidades, deseos, esperanzas y preferencias de todos los empleados dentro de una organización. La VoE toma en cuenta tanto las necesidades explícitas, tales como salarios, carrera profesional,  salud y jubilación, así como las necesidades tácitas que pueden incluir la satisfacción en el trabajo y el respeto de los compañeros de trabajo y de los supervisores.
Continuar leyendo


Grabación del webinar: ¿Cuándo usar las diferentes herramientas de Analítica de Texto?

El pasado día 7 de febrero presentamos nuestro webinar “Clasificación, extracción de topics, clustering… ¿Cuándo usar las diferentes herramientas de Analítica de Texto?”. Gracias a todos por vuestro interés.

En la sesión cubrimos la siguiente agenda:

  • Introducción a la analítica de texto.
  • ¿Qué escenarios de aplicación se pueden beneficiar más de la analítica de texto? Análisis de la conversación, visión de 360º, contenidos inteligentes, gestión del conocimiento, e-discovery, cumplimiento normativo… Beneficios y retos.
  • ¿Para qué sirven las diferentes funciones de la analítica de texto? Extracción de información, categorización, clustering, análisis de sentimiento, análisis morfosintáctico… Descripción, demostración y aplicaciones.
  • ¿Qué características debería poseer una herramienta de analítica de texto? ¿Es todo cuestión de precisión? ¿Cómo mejorar la calidad?
  • Un vistazo al roadmap de MeaningCloud.

IMPORTANTE: En este tutorial, puedes encontrar los datos que analizamos durante el webinar.

¿Interesado? A continuación tienes la presentación y la grabación del webinar.

(This webinar was also delivered in English. Please find the recording here.)
Continuar leyendo