Archivo de categorías: MeaningCloud

Esta categoría agrupa los distintos aspectos de MeaningCloud que se tratan en el blog.

Grabación del webinar: ¿Cuándo usar las diferentes herramientas de Analítica de Texto?

El pasado día 7 de febrero presentamos nuestro webinar “Clasificación, extracción de topics, clustering… ¿Cuándo usar las diferentes herramientas de Analítica de Texto?”. Gracias a todos por vuestro interés.

En la sesión cubrimos la siguiente agenda:

  • Introducción a la analítica de texto.
  • ¿Qué escenarios de aplicación se pueden beneficiar más de la analítica de texto? Análisis de la conversación, visión de 360º, contenidos inteligentes, gestión del conocimiento, e-discovery, cumplimiento normativo… Beneficios y retos.
  • ¿Para qué sirven las diferentes funciones de la analítica de texto? Extracción de información, categorización, clustering, análisis de sentimiento, análisis morfosintáctico… Descripción, demostración y aplicaciones.
  • ¿Qué características debería poseer una herramienta de analítica de texto? ¿Es todo cuestión de precisión? ¿Cómo mejorar la calidad?
  • Un vistazo al roadmap de MeaningCloud.

IMPORTANTE: En este tutorial, puedes encontrar los datos que analizamos durante el webinar.

¿Interesado? A continuación tienes la presentación y la grabación del webinar.

(This webinar was also delivered in English. Please find the recording here.)
Continuar leyendo


La experiencia del cliente, plato estrella de tu restaurante

 Tortilla de patatas, ¿con o sin cebolla?

¿Aún no sabes si los clientes de tu restaurante prefieren la tortilla de patatas con o sin cebolla? No te preocupes, en MeaningCloud encontrarás el pinche perfecto para adaptar tus fogones al gusto de tu comensal. La experiencia del cliente será el ingrediente clave para el éxito de tu negocio.

Navegando en un mar de páginas web y aplicaciones de esas que permiten dejar tu opinión sobre restaurantes, podrías descubrir por casualidad ¡que están hablando del tuyo! ¿Te imaginas que tus clientes hablan mal de tu maravillosa tortilla con cebolla a tus espaldas? Ya te adelanto que yo también la prefiero «sin».

Continuar leyendo


Clasificación, extracción de topics, clustering… ¿Cuándo usar las diferentes herramientas de Analítica de Texto? (webinar)

Cómo sacar partido de la tecnología de analítica de texto para tu negocio

text analytics

La mayoría de la información útil para las organizaciones está “enterrada” en forma de texto no estructurado (documentos, interacciones en el contact center, conversaciones sociales…). La analítica de texto nos ayuda a estructurar esos datos y convertirlos en información útil. Pero ¿qué herramientas de analítica de texto son las más adecuadas en cada caso? ¿Cuándo debería utilizar extracción de información y cuándo categorización o clustering? ¿Qué aplicaciones se pueden beneficiar más de la analítica de texto? ¿Cuáles son los retos?

Regístrate en este webinar de MeaningCloud el martes 7 de febrero a las 17:00 h. (CET) y descubre respuestas a estas y otras preguntas, usando ejemplos prácticos.

ACTUALIZACIÓN: este webinar ya ha tenido lugar. Ver la grabación aquí.

(This webinar has been delivered in English too, see the recording here.)


Aprende a desarrollar clasificadores de texto a medida (grabación del webinar)

El pasado día 4 de octubre presentamos nuestro webinar “Aprende a desarrollar clasificadores de texto a medida con MeaningCloud”. Gracias a todos por vuestra asistencia.

Empezamos presentando cómo realizar clasificación de texto con MeaningCloud y por qué es necesario desarrollar modelos a medida que se adapten al cada escenario concreto de aplicación. El grueso de la exposición consistió en utilizar un caso práctico (análisis de críticas de restaurantes) para mostrar cómo se pueden desarrollar esos modelos usando nuestro producto.

Continuar leyendo


Aprende a desarrollar clasificadores de texto a medida (webinar)

Descubre en este webinar como usar las herramientas de MeaningCloud para crear modelos de clasificación totalmente adaptados a tu escenario

Una de las preguntas más habituales que recibimos a través de nuestra línea de soporte es cómo hacer una clasificación de texto según taxonomías específicas de la aplicación. Por ejemplo, alguien que necesite analizar llamadas en el contact center y respuestas abiertas a encuestas de un banco puede estar interesado en clasificar esos mensajes según los diferentes tipos de productos y servicios de la entidad (depósitos, préstamos, hipotecas, etc.) o la naturaleza de la interacción (petición de información, contratación, reclamación, etc.).

Clasificación a medida

Continuar leyendo


El etiquetado automático IAB hace posible la publicidad semántica

Nuestra API de Text Classification soporta la taxonomía contextual estándar del IAB permitiendo etiquetar contenidos según ese modelo en grandes volúmenes y a gran velocidad y facilitando la participación en el nuevo ecosistema de publicidad online. El resultado es la impresión de anuncios en el contexto más adecuado, con un mayor rendimiento y protección de marca para los anunciantes.

Qué es la clasificación contextual de IAB y para qué sirve

La taxonomía contextual IAB QAG fue inicialmente desarrollada por el Interactive Advertising Bureau (IAB) como centro de su programa Quality Assurance Guidelines, que buscaba promover la seguridad de las marcas anunciantes, garantizando que sus anuncios no aparecían en un contexto de contenido inadecuado. El programa QAG incluía posibilidades de certificación para todo tipo de agentes en la cadena de valor de la publicidad digital, desde redes y exchanges publicitarios hasta publishers, supply side platforms (SSPs), demand side platforms (DSPs) y agency trading desks (ATDs).

Las Quality Assurance Guidelines sirven como un marco de autorregulación que garantiza a los anunciantes que sus marcas están seguras, aumenta el control de los anunciantes sobre la ubicación y el contexto de sus anuncios y ofrece transparencia al mercado estandarizando la información que fluye entre los agentes, al proporcionar un lenguaje claro y común que describe las características del inventario publicitario y de las transacciones a través de la cadena de valor.

Esencialmente la taxonomía contextual sirve para etiquetar contenidos y se compone de unos niveles 1 y 2 estándar -que especifican respectivamente la categoría general del contenido y una serie de subcategorías anidadas dentro de esa categoría principal- y de unos niveles 3 y siguientes que pueden ser definidos por cada organización. Las siguientes figuras presentan dichos niveles estándar.

Continuar leyendo


Un análisis de sentimiento a tu medida (grabación del webinar)

El pasado día 3 presentamos nuestro webinar “Implementa un análisis de sentimiento totalmente a tu medida con MeaningCloud”. Gracias a todos por vuestra asistencia.

Después de una breve introducción a MeaningCloud y al funcionamiento de su add-in para Excel desarrollamos un ejemplo práctico de análisis de sentimiento en un dominio concreto (críticas de restaurantes) y mostramos cómo las herramientas de personalización de MeaningCloud se pueden utilizar para aumentar la exactitud del análisis:

  • Incorporando atributos relevantes del dominio y enfocando el análisis alrededor de ellos, mediante la creación de diccionarios personales de entidades y conceptos.
  • Especificando la polaridad de las expresiones en el dominio en función del contexto, gracias a la creación de modelos personales de sentimiento.

En conjunto, estas herramientas permiten a nuestros usuarios una gran autonomía en la personalización de MeaningCloud y ponen el análisis de sentimiento de la mayor calidad al alcance de todo el mundo.

Continuar leyendo


Un análisis de sentimiento totalmente a tu medida con nuestra nueva herramienta de personalización

La adaptación al dominio es lo que marca la diferencia entre un análisis de sentimiento bueno y uno excepcional. Hasta ahora las posibilidades de adaptar el análisis de sentimiento de MeaningCloud a tu contexto se cifraban en utilizar diccionarios personales -para crear nuevas entidades y conceptos que la API de Sentiment Analysis utilizara para realizar su análisis basado en aspectos- o en solicitar a nuestro departamento de Servicios Profesionales que desarrollara un modelo de sentimiento a tu medida.

Sentiment Models buttonCon la publicación de Sentiment Analysis 2.1 incorporamos una nueva herramienta de personalización orientada a la creación de modelos de sentimientos personales. Esta herramienta utiliza a fondo nuestra tecnología de Procesamiento del Lenguaje Natural para permitiros ser autónomos y desarrollar -sin necesidad de programar- potentes motores de análisis de sentimiento adaptados a vuestras necesidades.

Otras herramientas para personalizar el análisis de sentimiento disponibles en el mercado permiten esencialmente definir “bolsas de palabras” con polaridad positiva o negativa. Nuestras herramientas van mucho más allá y hacen posible

  • Definir el papel de una palabra como vector de polaridad (contenedor, negador, modificador), permitiendo usar lemas para incorporar fácilmente las variantes de cada palabra
  • Especificar casos particulares de la polaridad de una palabra, dependiendo del contexto en el que aparece o de la función morfosintáctica que desempeña en cada caso
  • Definir expresiones multipalabra como elementos prioritarios en la evaluación de polaridad
  • Gestionar el modo en que estos modelos personales de polaridad complementan o sustituyen a los diccionarios generales de cada idioma.

Screenshot Sentiment Customization

Por ejemplo, la expresión “el tipo de interés es muy alto” expresada por un cliente de servicios financieros, puede ser positiva en un contexto de depósitos pero negativa en un contexto de hipotecas. Con esta herramienta es posible definir esas diferentes polaridades para los distintos casos.

Además, el uso de esta herramienta está incluido en tu suscripción a MeanungCloud sin coste adicional (incluso en el plan Gratis).

Esta herramienta de modelos de sentimiento complementa nuestra oferta para el desarrollo de recursos semánticos personales y contribuye al objetivo de MeaningCloud de poner la analítica de texto de la máxima calidad al alcance de todos los desarrolladores.

¿Quieres saber cómo aplicar la herramienta de personalización de análisis de sentimiento en un escenario práctico? Regístrate en este webinar el día 3 de mayo y lo descubrirás.

ACTUALIZACIÓN: este webinar ya ha tenido lugar. Ver la grabación aquí.

IMPORTANTE: Sentiment Analysis 2.1 introduce cambios en la API que hacen necesario migrar tus aplicaciones a esta nueva versión. La migración es muy sencilla y se explica aquí. Recuerda que Sentiment Analysis 2.0 dejará de estar operativo el 7 de julio de 2016: ¡planifica tu migración con tiempo!

Grabación del webinar: 10 formas de aumentar los beneficios de los medios utilizando metadatos

Ayer celebramos nuestro webinar “10 formas de aumentar los beneficios de los medios utilizando metadatos”, que contó con la participación de Mario Tascón, experto en transformación digital de medios de comunicación. Mchas gracias por vuestra participación.

A continuación tenéis enlaces tanto a las presentaciones como a la grabación del webinar.

Y, como extra, acceso a nuestro e-book inédito “ContenidosInteligentes – 10 formas de aumentar los beneficios de medios y otros editores utilizando metadatos” donde se explican con mayor detalle algunos de los temas del webinar.

Esperamos que os sean útiles.

Continuar leyendo


10 formas de aumentar los beneficios de los medios utilizando metadatos – un webinar con Mario Tascón

El miércoles 6 de abril en MeaningCloud daremos la bienvenida a Mario Tascón, experto en transformación digital de los medios de comunicación, para un webinar de una hora dedicado a cómo aumentar los beneficios de medios utilizando metadatos.

Enriqueimieno semánticoEste webinar tendrá un enfoque enormemente práctico. Servirá para analizar 10 formas en las que los medios deberían explotar los contenidos inteligentes que mejoren su rentabilidad. Repasaremos 10 acciones sencillas que conducen a la necesaria agregación de valor por medio de metadatos (también llamados “etiquetas semánticas”).

En una época no muy lejana los clientes de los medios de comunicación pagaban sin problemas por los periódicos impresos.

Los editores de contenidos se han dado cuenta de que para conseguir clientes que paguen por sus contenidos es fundamental agregar valor a través de una mejor creación, promoción, entrega y presentación de su materia prima, de los contenidos. Y sabemos que producir contenidos de calidad es caro.

A la mayor parte de los medios les resulta difícil encontrar materiales relevantes en el archivo para poder reutilizarlos cuando los redactores escriben nuevo contenidos.

Por otra parte, para conseguir más ingresos por publicidad, los medios tienen el desafío de atraer más usuarios y conseguir un grado mayor de engagement, que básicamente se traduce en páginas vistas y tiempo en el sitio.

En MeaningCloud utilizamos tecnología semántica para “entender” la estructura y el significado de los contenidos digitales del archivo de un medio y enriquecerlo con “metadatos” (también conocidos como “etiquetas semánticas”) que nos facilitan la búsqueda, integración, creación y publicación inteligente de los contenidos.

Temas que vamos a tratar:

  1. Contexto de negocio en medios: los problema que hemos encontrado.
  2. Metadatos. ¿Qué son y para qué sirven?
  3. Cómo trabaja una plataforma semántica.
  4. Acciones para reducir costes.
  5. Acciones para aumentar ingresos.

Cuándo: miércoles, 6 de abril. 17 h. CET (Madrid)

Duración: 1 hora

Ponentes: Mario Tascón (Prodigioso Volcán) y Eduardo Valencia (MeaningCloud)

Más información y registro.

Registrarme en Webinar

A los asistentes se les enviará en exclusiva el ebook inédito: “10 formas de aumentar los beneficios de medios y otros editores utilizando metadatos”.

¿No puede asistir? Regístrese igualmente y le enviaremos enlace a la grabación.

ACTUALIZACIÓN: este webinar ya ha tenido lugar. Ver documentación y grabación aquí.