Category Archives: Text Analytics

Voice of the Customer in the insurance industry

For insurance companies, it is vital to listen and understand the feedback that their current and potential customers express through all kinds of channels and touch points. All this valuable information is known as the Voice of the Customer.  By the way, we had already dedicated a blog post to Text mining in the Insurance industry.

(This post is a based upon the presentation given by Meaning Cloud at the First Congress of Big Data in the Spanish Insurance Industry organized by ICEA. We have embedded our PPT below).  

More and more insurance companies have come to realize that, as achieving product differentiation at the industry is not easy at all, succeeding takes getting satisfied customers.

Listening, understanding and acting on what customers are telling us about their experience with our company is directly related to improving the user experience and, as a result, the profitability. In the post on Voice of the Customer and NPS, we saw in more detail this correlation between customer experience and benefits.


Continue reading

Some conclusions from our Text Analytics survey

What does “text analytics” mean to you and your organization? How do you plan to use Text Analytics in 2016? For MeaningCloud, as a text analytics tool vendor, having some answers to these questions is key to understand our market and define our product strategy: this was the purpose of the survey we kept open during some weeks, since the beginning of last October.

Even though the number of respondents was quite low (60) it is definitely possible to draw some conclusions and trends that we summarize in this post.

Applications: customer is first

What is your text analytics application scenario? No doubt this is the main question when one needs to analyze the uses of this technology. In our results, Understanding customer attitudes, behaviors, and needs was the most mentioned scenario (62%), followed by Research (48%) and Content Classification, recommendation, and personalization (43%) as it can be seen in the figure. The following two categories were Customer service, improving customer experience (40%) and Brand/reputation management (38%), which means that everything related to customer understanding, improving customer experience, and managing the brand lead the text analytics application area, coping 3 of the 5 first positions.

Continue reading