Archivo de etiquetas: monitorización redes sociales

Entradas relacionadas con la monitorización de redes sociales

¿Pueden los antidepresivos causar malformaciones en el feto?

Puede que no sea lo más común que en el blog de una empresa de tecnología de la información se hable de antidepresivos y embarazos, lo entendemos perfectamente. Pero en MeaningCloud hemos comprobado que los temas de salud tienen una fuerte repercusión en medios sociales y las empresas del sector, incluyendo las farmacéuticas, harían bien en tratar de entender la conversación que se genera alrededor. ¿Cómo? Mediante la tecnología de análisis de texto, como veremos a continuación.

Mirando los datos recogidos por nuestro prototipo para la monitorización de temas de salud en medios sociales nos sorprendimos del repentino incremento de menciones del término ‘embarazo’ el día 10 de julio. Para saber el porqué de este dato, acudimos a los tuits que hablaban sobre ese estado de buena esperanza. Resulta que ese mismo día se había publicado una noticia sobre un estudio aparecido en el British Medical Journal sobre los efectos nocivos que los antidepresivos pueden causar en el feto durante el embarazo.
Continuar leyendo


Analizando datos sobre salud en medios sociales

El análisis de medios sociales puede ser una buena inversión en el área de salud. A la gente le encanta compartir información en los medios sociales, incluso datos sobre salud. ¡Sí, es verdad! Y constituye el punto de partida del trabajo de investigación titulado ‘Exploring Spanish health social media for detecting drug effects’, cuyo objetivo es monitorizar las conversaciones en medios sociales para averiguar cómo hablan los usuarios sobre su relación con el consumo de fármacos. Esto permite identificar posibles efectos adversos hasta ahora desconocidos relacionados con dichos fármacos. Aunque existe un protocolo oficial para informar a las autoridades competentes de la existencia de algún efecto adverso no documentado, se llegan a comunicar solamente un 5 – 20 % de ellos. Además, se pueden analizar las conversaciones sobre fármacos, síntomas, condiciones y enfermedades para obtener más información. Por ejemplo, es posible descubrir cómo los usuarios buscan medicamentos específicos a través de los medios sociales o cómo algunos se dedican a venderlos, a menudo de forma ilegal; muchos otros hablan de la mezcla de alcohol con drogas u otras sustancias ilegales. Por supuesto, no todo lo que aparece en internet es fiable—este es otro tema—, pero puede estimular el planteamiento de nuevas hipótesis.

drugs

El equipo de investigación Grupo de Bases de Datos Avanzadas de la Universidad Carlos III de Madrid ha llevado a cabo la investigación mencionada y ha desarrollado modelos híbridos para obtener el conocimiento necesario para identificar efectos adversos. La plataforma de procesamiento del lenguaje natural que ha permitido el análisis basado en esos modelos es MeaningCloud. Las capacidades de personalización que ofrece esta plataforma han sido decisivas, puesto que han facilitado la integración de vocabulario específico y otros conocimientos del dominio de la medicina. Como sabemos, los nombres de los medicamentos y de los síntomas pueden ser muy complicados y a menudo no es fácil escribirlos adecuadamente. Los resultados del algoritmo son prometedores, ya que su recall es un 10 % mayor que el de otros algoritmos conocidos. Puedes encontrar más detalles en el artículo científico publicado por la revista BMC Medical Informatics and Decision Making Journal. Estos desarrollos forman parte del proyecto TrendMiner y están disponibles en la página web: TrendMiner Health Analytics Dashboard, que recopila los comentarios de los usuarios de medios sociales sobre fármacos antidepresivos. La consola muestra los antidepresivos mencionados junto con los síntomas relacionados; haciendo clic en cada uno de ellos se puede consultar su evolución a lo largo del tiempo. Además, en la parte inferior de la página se muestran los textos originales que se han analizado para extraer dichas menciones, los nombres de medicamentos, síntomas, enfermedades y cualquier relación haya sido identificada entre ellos. Esas relaciones pueden revelar si un fármaco es adecuado para un determinado síntoma o si una enfermedad es, en realidad, un efecto adverso provocado por el medicamento mencionado. El prototipo permite también hacer búsquedas utilizando el código ATC (Anatomical Therapeutic Chemical Classification System) y el nivel correspondiente según este sistema de clasificación. Si se activa la opción ‘By Active Substance’ [‘por principio activo’], se buscará cualquier fármaco contenga el principio activo del producto buscado. Por otro lado, la funcionalidad de búsqueda predictiva permitirá encontrar más fácilmente la expresión correcta para referirse a un fármaco o a una enfermedad.

Las empresas del dominio de salud y las farmacéuticas ya pueden explotar su información no estructurada


En la industria farmacéutica y de salud
, tenemos a nuestra disposición nuevas herramientas de ciencia de datos capaces de extraer información valiosa sobre documentos de redacción libre como las historias clínicas electrónicas. Es posible explotar la información asociada a datos como el coste de tratamientos médicos, su eficiencia (precio, ventajas y riesgos), referencias a fármacos, efectos secundarios o resultados a largo plazo.

[/raw]


Mejorando la gestión de emergencias analizando contenidos en redes sociales

¿Servir a los ciudadanos sin escuchar los medios sociales?App Llamada Emergencias

Los canales tradicionales de acceso a los servicios de emergencias por parte de los ciudadanos (típicamente a través de los teléfonos 112) deben ser expandidos con el análisis de medios sociales en tiempo real (canales web 2.0). Esta observación es el punto de partida de una de las líneas en las que el Grupo Telefónica (uno de los proveedores de referencia mundiales en sistemas integrados de gestión de emergencias) ha venido trabajando con vistas a su integración en su plataforma SENECA.

 

Cuadro de mando social para gestión de emergencias

Desde Daedalus, hemos trabajado para Telefónica en el desarrollo de un cuadro de mando social que analiza y organiza la información compartida en redes sociales (inicialmente Twitter) antes, durante y después de que se produzca un incidente de interés para los servicios de atención a emergencias. Desde el punto de vista funcional, esto conlleva:

  • Recoger las interacciones (tuits) relativos a incidencias en un área geográfica determinada
  • Clasificarlas según el tipo de incidencia (concentraciones, accidentes, desastres naturales…)
  • Identificar la fase en el ciclo de vida de la incidencia (alerta o pre-incidencia, incidencia o post-incidencia)

 

Beneficios para las organizaciones que gestionan emergencias

Anticipar incidentes

Love Parade Duisburg

Anticipación a eventos que, por imprevisibles o por desconocerse su magnitud a priori, deban ser objeto de atención futura por los servicios de atención a emergencias. Dentro de este escenario se encuentran los eventos sobre concentración de personas que son convocados, difundidos o simplemente comentados a través de redes sociales (asistencia a eventos festivos o deportivos, manifestaciones, etc.) Predecir las dimensiones y alcance de estos eventos es fundamental para planificar la atención por parte de las diferentes autoridades. Recordemos en este sentido el caso de los disturbios a raíz de una fiesta de cumpleaños convocada en la localidad holandesa de Haren a través de la red Facebook en 2012 o la tragedia de la Love Parade de Duisburg.

Continuar leyendo