Invocando a la API de Análisis de Sentimiento de MeaningCloud desde la Onesait Platform de Minsait

La Onesait Platform de Minsait es una Plataforma IoT & Big Data pensada para facilitar y acelerar la construcción de nuevos sistemas y soluciones digitales y así lograr la transformación y disrupción de los negocios.

Minsait ha publicado un post sobre el procedimiento para invocar una API externa desde el motor de flujos integrado de Onesait Platform (antes conocida como Sofia2).

MeaningCloud integrated with Minsait Onesait Platform

El post titulado ¿CÓMO INVOCAR A UN API REST EXTERNA DESDE EL MOTOR DE FLUJOS SOFIA2? utiliza como ejemplo la integración de API de Análisis del Sentimiento de MeaningCloud.

El artículo ilustra uno de los puntos fuertes de MeaningCloud: lo fácil que es integrar sus APIs en cualquier sistema o proceso.

Captura de un interfaz de sofia2. Conexión con la API de Sentimiento de MeaningCloud

 

 

 


Voz del Cliente en Comercio: más allá del precio

Vector background of empty supermarket at morning, lines with merchandise. Place for retail, mall interior with fridges, stands and shelves. Grocery store, shop with signboard and pointer inside.

El precio ya no es lo primero que un cliente ve en los supermercados. Escuchar la voz del cliente para identificar las fortalezas y debilidades de cualquier negocio es fundamental cuando se aplican técnicas de retención eficientes. Y esto es especialmente palpable en el sector del comercio (consumo o retail).

Continuar leyendo


Grabación del webinar: Resuelve los problemas de categorización de texto más complejos

Gracias a todos por vuestro interés en nuestro webinar “Una nueva herramienta para resolver problemas complejos de categorización de texto” que celebramos el pasado 18 de junio y donde explicamos cómo utilizar nuestra herramienta de personalización de Categorización Profunda para resolver escenarios de clasificación de texto donde las tecnologías tradicionales de aprendizaje automático presentan limitaciones.

En la sesión cubrimos estos puntos:

  • Desarrollando modelos de categorización en el mundo real
  • Categorización basada en aprendizaje automático puro
  • API de Categorización Profunda. Modelos predefinidos y packs verticales
  • La nueva Herramienta de Personalización de Categorización Profunda. Lenguaje de reglas semánticas
  • Caso real: desarrollo de un modelo de categorización
  • Categorización Profunda – Clasificación de Texto. ¿Cuándo usar una u otra?
  • Proceso ágil de desarrollo de modelos. Combinación con aprendizaje automático

IMPORTANTE: este artículo es un tutorial basado en la demostración que realizamos y que incluye los datos a analizar y los resultados del análisis.

¿Interesado? A continuación tienes la presentación y la grabación del webinar.

(This webinar was also delivered in English. Please find the recording here.)
Continuar leyendo


Respondiendo a bulos sobre medicamentos mediante Text Analytics

El pasado fin de semana estuvimos divirtiéndonos en el IV Hackathon de Salud con nuestros amigos del Grupo HULAT de la Universidad Carlos III de Madrid y del equipo que Text Mining for Life Sciences del Barcelona Supercomputer Center. En concreto tomábamos parte del reto de Sandoz #medicamentossinbulos, aplicando tecnología de text analytics al proceso de identificación y respuesta a bulos sobre medicamentos.

Un ejemplo de un caso de bulo puede ser este:

Ejemplo de bulo

Ejemplo de bulo

Podemos distinguir distintos tipos de bulos:

  • Describir una falsedad como si fuese una verdad, como en el ejemplo de arriba
  • Afirmaciones no probadas científicamente
  • Indicaciones o efectos adversos no relacionados con el fármaco en cuestión

La propuesta de valor que definimos durante el hackathon es:

Propuesta de Valor

Propuesta de Valor

 

El principal objetivo de nuestra solución es proporcionar información veraz, rápidamente, para reaccionar a un posible bulo. Esto incluye procesar fuentes externas de confianza, como la web de la Agencia Española del Medicamento o del Ministerio de Salud, entre otros, para, de forma inmediata, localizar datos fiables sobre un fármaco o una enfermedad.

Un caso de uso de este sistema se centra en profesionales de la salud: supongamos un paciente que está preguntando a su médico sobre una noticia que ha leído alertando contra el uso de una medicación que el paciente está consumiendo. Si en ese momento el profesional sanitario dispone de información sólida sobre esa noticia, puede responder al paciente referenciando a esas fuentes externas. Por ejemplo, el médico podría decir ‘la Agencia Española del Medicamento no ha publicado ninguna alerta sobre ese medicamento’ .

Durante el hackathon, preparamos una demostración en la que un bot, @trolabot, identificaba posibles bulos en una conversación de Telegram y proporcionaba a los interlocutores enlaces a contenidos veraces que permitían refutar el posible bulo.

Una herramienta de este estilo es también de utilidad para profesionales de la comunicación en el mundo de la salud, tanto influencers como agencias de comunicación.

El primer paso para identificar estos bulos pasa por saber que se menciona un medicamento a través de técnicas de reconocimiento de entidades. Esta tarea no es sencilla dada la dificultad para escribir esos nombres, como es el caso de la fenilpropanolamina. En general, el lenguaje de salud es muy particular, más complejo que el lenguaje común. Basta leer un informe de una consulta médica para darse cuenta. Por ello, para hacer un tratamiento automático de ese lenguaje es necesario contar con herramientas de text analytics capaces de adaptarse a ese lenguaje, incluyendo recursos léxicos y semánticos específicos del dominio, como pueden ser SNOMED, CIE (ICD en sus siglas en inglés), MedDRA, entre muchos otros. Como no podía ser de otra forma, estos recursos han sido preparados por profesionales de la medicina.

Una vez que sabemos que un post, una noticia o un mensaje de whatsapp hablan sobre un fármaco, es necesario determinar si se trata de un bulo. Para ello podemos explotar el tipo de lenguaje que se suele emplear en estos mensajes, donde aparecen palabras o expresiones casi específicas como ‘sanación’o frases como ‘XXX previene enfermedades como YYY’, donde XXX sería el nombre de un fármaco e YYY el nombre de cualquier enfermedad grave para la que no hay cura o para la que el fármaco no está indicado. Hay que tener en cuenta que existen fuentes de información fiable que permiten saber para qué enfermedades y síntomas está indicado un fármaco y para cuáles no. En definitiva, estamos ante un problema de clasificación de textos para el que se puede construir un modelo de clasificación específico. Dado que no se dispone de ejemplos de bulos suficientes como para entrenar un modelo basado en machine learning el punto de partida sería un modelo basado en reglas, extraídas por lingüistas a partir de los casos de bulos conocidos. Con el tiempo, los bulos recogidos pueden alimentar una colección que pueda emplearse para entrenar un nuevo modelo.

En nuestra propuesta para el reto #medicamentossinbulos tiene como núcleo las tecnologías de text analytics descritas y se distinguen dos fases:

Fase de entrenamiento/diseño del modelo de clasificación de bulos

Fase de entrenamiento/diseño del modelo de clasificación de bulos

Esta es la fase de entrenamiento en la que se combina el proceso de reconocimiento de entidades con el de clasificación. En nuestro caso, como decíamos, no hay datos suficientes sobre bulos en medicamentos como para entrenar un modelo basado en machine learning así que se han desarrollado reglas similares a la que se muestra a continuación.

Ejemplo de regla de identificación de bulos

Ejemplo de regla de identificación de bulos ” ‘fármaco’ produce ‘síntoma/enfermedad”

 

Fase de predicción del sistema de identificación de bulos

Fase de predicción del sistema de identificación de bulos

En la fase 2 se aplican en tiempo real los modelos entrenados anteriormente sobre contenidos que pueden provenir de un sistema de monitorización de medios sociales como Twitter, blogs especializados, etc.

Aunque el premio del reto fue para otra gran idea relativa a la identificación segura de lotes de medicamentos retirados, pasamos un buen rato compartiendo experiencias y aprendiendo con los participantes y mentores del hackathon. ¡Veremos qué pasa el año que viene!

 


Caso de estudio: Voz del paciente en la industria farmacéutica

Las compañías farmacéuticas están extendiendo sus proyectos de Voz del Paciente a las redes sociales: comentarios en foros web, encuestas, Twitter, etc.

El objetivo de la prueba de concepto de esta compañía farmacéutica en España fue: “Recopilar y analizar cuantitativa y cualitativamente la voz del paciente desde los canales donde se expresa”, en redes sociales como foros web, Facebook, Twitter y otros sistemas.

Para la industria farmacéutica, es esencial escuchar y comprender los comentarios que sus clientes actuales y potenciales se expresan a través de todo tipo de medios y puntos de contacto.

Y los foros web reúnen millones de posts. Un foro web es un punto de encuentro para pacientes. Comparten apoyo, experiencias y sabiduría con compañeros, familiares y amigos.

Continuar leyendo


Web scraping y analítica de texto

Los proyectos de análisis de texto muy a menudo utilizan fuentes públicas de Internet. Estos proyectos generalmente comienzan extrayendo datos de varios sitios web. Llamamos a este proceso “web scraping” (o “scraping”, que significa “raspar”). Aunque una persona puede llevar a cabo este proceso de manera manual, el término “web scraping”  a menudo se refiere a métodos automatizados ejecutados utilizando un rastreador web (“web crawler”).

Como ejemplos de proyectos donde el proceso de web scraping añade una valiosa cantidad de información podemos mencionar los de experiencia del cliente (o también los de experiencia del paciente o la experiencia del empleado), la optimización dinámica de los precios, el monitoreo de la competencia o la verificación del cumplimiento normativo.

Continuar leyendo


Contact center: 6 formas de aprovechar la analítica de texto y de voz

Contact center. Illustration

En los contact-center, la tecnología de análisis de texto brinda una oportunidad sin precedentes para convertir las interacciones de los clientes en oportunidades de negocio. Podemos mejorar la experiencia del cliente, aumentar las ventas, reducir la rotación de clientes y optimizar la eficiencia de los procesos.

Continuar leyendo


MeaningCloud participa en T3chFest 2019

Este año MeaningCloud participa en T3chFest, la feria de informática de la Universidad Carlos III de Madrid.

T3chFest nació como una muestra de los trabajos realizados en el Departamento de Informática. Hoy en día se ha convertido en un evento referente en España en el mundo de la tecnología. En su última edición, más de 1600 personas asistieron a un total de 80 charlas.

Este año hemos presentado la ponencia NLP for Small Data. En ella haremos un repaso al estado del arte en el mundo del procesado de lenguaje natural. Además, hablaremos de los avances en la utilización de Deep Learning y modelos lingüísticos.

Dos lingüistas de nuestro equipo serán los responsables de la charla: Concepción Polo, directora de Lingüística, y María José García, lingüista computacional. Ambas participan activamente en los modelos lingüísticos de todos nuestros productos, desde los prototipos iniciales hasta apretar el último tornillo.

Estamos felices de que MeaningCloud participe en T3chFest 2019. Felices por haber sido seleccionados de entre más de 600 propuestas, queremos agradecer a la organización la oportunidad de participar en el evento: estamos seguros de que será memorable.

¡Nos vemos en el T3chFest!
 

ACTUALIZACIÓN: Esta es la presentación que hicimos


«Text mining» in poche parole: MeaningCloud in italiano

Nei nostri post precedenti abbiamo parlato dell’analisi del testo in francese e in portoghese utilizzando gli strumenti di Text Mining di MeaningCloud. Per concludere questa serie linguistica, oggi vediamo che tipo di analisi possiamo eseguire in italiano.

La lingua italiana viene parlata in diversi stati europei, tra i quali l’Italia, la Repubblica di San Marino, la Città del Vaticano, la Slovenia, la Croazia e la Svizzera, con un totale di quasi 70 milioni di parlanti. Poiché gli italiani sono emigrati in tutto il mondo, la loro lingua è presente anche dall’altra parte dell’oceano. In Sud America, per esempio, è la seconda lingua più parlata in Argentina. Negli Stati Uniti, nonostante non sia una delle lingue ufficiali, molti cittadini sono di origine italiana e quindi parlano italiano in patria. Per questo motivo abbiamo deciso di includere nel nostro pacchetto di lingue standard una lingua così diffusa.

Hello in many languages

Analogamente ai nostri post precedenti, spiegheremo da un punto di vista linguistico che cos’è l’analisi del testo (o Text Mining) e quali funzionalità fornisce MeaningCloud in italiano.

Continuar leyendo


¿Estás escuchando la Voz del Cliente?

Voice of the Customer

«Tu cliente más insatisfecho es tu mayor fuente de inspiración». Bill Gates

En un mercado ampliamente digitalizado, abierto a todos y —sin duda— más vivo que hace apenas una década, identificar rápidamente las quejas y necesidades del cliente es clave para mantener la competitividad de una empresa en su sector. La democratización tecnológica ha dotado a los usuarios de capacidades y herramientas que convierten en una experiencia no solo el producto, sino también otros muchos aspectos. Si después de varios años de inversión y desarrollo, nuestro producto ha llegado a posicionarse entre los mejores en su segmento, ¿tiene sentido, por ejemplo, que un proceso de compra mal diseñado arruine el convencimiento de potenciales clientes de que merece la pena elegirnos?

Continuar leyendo