Archivo de categorías: API

Entradas sobre las API de MeaningCloud.

Análise de texto explicada: MeaningCloud em português

Algumas semanas atrás falamos sobre o desempenho da análise de texto do MeaningCloud em textos franceses. Chegou a hora do português!

O Português, junto com o espanhol, tem uma presença enorme na América do Sul. É falado por mais de 200 milhões de pessoas apenas no Brasil. Não só tem uma influência imensa na economia na América do Sul, mas também na Europa, onde é usado por mais de 10 milhões de pessoas. A África também tem nativos do português. A Angola, que tem uma população de mais de 24 milhões de pessoas, reconhece o português como seu idioma oficial. A sua presença nesses três continentes o torna difícil de esquecer no nosso pacote de idiomas padrão. No MeaningCloud, oferecemos duas variantes de português: Português do Brasil e da Europa.

Hello in many languages

Se o conceito de “análise de texto” parece um pouco vago ou se você está procurando por algo mais especificamente relacionado à linguagem, este post é ideal para você. Mantemos uma diversidade de idiomas e queremos mostrar todas as funcionalidades que fornecemos em português.

Continuar leyendo


L’analyse de texte expliquée : MeaningCloud en français

En raison de l’essor des technologies de traitement automatique du langage naturel, l’analyse de texte est sur toutes les lèvres. Cependant, la plupart des services dans ce domaine sont fournis en anglais et, en fonction de la langue qui vous intéresse, il est parfois difficile de trouver les fonctionnalités que vous recherchez.

Ne vous inquiétez pas, nous sommes là pour vous aider. Par exemple, le français est une langue utilisée sur les cinq continents avec plus de 300 millions de locuteurs, mais c’est également la première ou la deuxième langue de communication de nombreuses organisations internationales [1]. Ce n’est donc pas un hasard si elle figure dans notre Pack standard de langues !

Hello in many languages

Si le concept « d’analyse automatique de texte » vous semble plutôt flou ou si vous recherchez un élément plus spécifiquement lié à la langue, ce billet vous est destiné. Nous tenons compte de la diversité des langues et nous voulons vous présenter toutes les fonctionnalités que nous fournissons en français.

Continuar leyendo


El abecé de la analítica de texto & MeaningCloud

Una de las preguntas que más recibimos es cómo se pueden aplicar a casos particulares los servicios de analítica de texto de MeaningCloud.

Nuestros usuarios conocen los beneficios de la analítica de texto y quieren incorporarla en su flujo de trabajo, pero no están seguros de cómo canalizar sus necesidades empresariales a una solución que puedan integrar con facilidad. Si además se incluye el hecho de que cada proveedor denomina de manera diferente a los productos de analítica de texto, se convierte en una odisea no solo empezar a integrar estos productos en tu flujo de trabajo, sino también llegar a saber qué es lo que necesitas exactamente en tu caso.

homer-simpson-confused

Continuar leyendo


¿Qué es la voz del empleado (VoE)?

Voz del Empleado. Siluetas con burbujas que representan el diálogo

Conseguir empleados comprometidos se ha convertido en una prioridad  para muchas organizaciones en los sectores público y privado. Los programas de la Voz del Empleado (VoE) desempeñan un papel clave en esos esfuerzos, al permitir recolectar, administrar y actuar de manera sistemática sobre el feedback y las aportaciones de los empleados sobre una variedad de temas relevantes para la empresa.

La relación entre Engagement y Voz del Empleado es muy parecida  a la que existe entre la Voz del Cliente (VoC) y la Experiencia del Cliente. VoC proporciona las ideas que mejoran la experiencia del cliente. La Voz del Empleado tiene la misma función para el compromiso de los empleados. Ver: Voz del Empleado, Voz del Cliente y NPS

La Voz del Empleado recoge las necesidades, deseos, esperanzas y preferencias de todos los empleados dentro de una organización. La VoE toma en cuenta tanto las necesidades explícitas, tales como salarios, carrera profesional,  salud y jubilación, así como las necesidades tácitas que pueden incluir la satisfacción en el trabajo y el respeto de los compañeros de trabajo y de los supervisores.
Continuar leyendo


Grabación del webinar: ¿Cuándo usar las diferentes herramientas de Analítica de Texto?

El pasado día 7 de febrero presentamos nuestro webinar “Clasificación, extracción de topics, clustering… ¿Cuándo usar las diferentes herramientas de Analítica de Texto?”. Gracias a todos por vuestro interés.

En la sesión cubrimos la siguiente agenda:

  • Introducción a la analítica de texto.
  • ¿Qué escenarios de aplicación se pueden beneficiar más de la analítica de texto? Análisis de la conversación, visión de 360º, contenidos inteligentes, gestión del conocimiento, e-discovery, cumplimiento normativo… Beneficios y retos.
  • ¿Para qué sirven las diferentes funciones de la analítica de texto? Extracción de información, categorización, clustering, análisis de sentimiento, análisis morfosintáctico… Descripción, demostración y aplicaciones.
  • ¿Qué características debería poseer una herramienta de analítica de texto? ¿Es todo cuestión de precisión? ¿Cómo mejorar la calidad?
  • Un vistazo al roadmap de MeaningCloud.

IMPORTANTE: En este tutorial, puedes encontrar los datos que analizamos durante el webinar.

¿Interesado? A continuación tienes la presentación y la grabación del webinar.

(This webinar was also delivered in English. Please find the recording here.)
Continuar leyendo


Clasificación, extracción de topics, clustering… ¿Cuándo usar las diferentes herramientas de Analítica de Texto? (webinar)

Cómo sacar partido de la tecnología de analítica de texto para tu negocio

text analytics

La mayoría de la información útil para las organizaciones está “enterrada” en forma de texto no estructurado (documentos, interacciones en el contact center, conversaciones sociales…). La analítica de texto nos ayuda a estructurar esos datos y convertirlos en información útil. Pero ¿qué herramientas de analítica de texto son las más adecuadas en cada caso? ¿Cuándo debería utilizar extracción de información y cuándo categorización o clustering? ¿Qué aplicaciones se pueden beneficiar más de la analítica de texto? ¿Cuáles son los retos?

Regístrate en este webinar de MeaningCloud el martes 7 de febrero a las 17:00 h. (CET) y descubre respuestas a estas y otras preguntas, usando ejemplos prácticos.

ACTUALIZACIÓN: este webinar ya ha tenido lugar. Ver la grabación aquí.

(This webinar has been delivered in English too, see the recording here.)


El etiquetado automático IAB hace posible la publicidad semántica

Nuestra API de Text Classification soporta la taxonomía contextual estándar del IAB permitiendo etiquetar contenidos según ese modelo en grandes volúmenes y a gran velocidad y facilitando la participación en el nuevo ecosistema de publicidad online. El resultado es la impresión de anuncios en el contexto más adecuado, con un mayor rendimiento y protección de marca para los anunciantes.

Qué es la clasificación contextual de IAB y para qué sirve

La taxonomía contextual IAB QAG fue inicialmente desarrollada por el Interactive Advertising Bureau (IAB) como centro de su programa Quality Assurance Guidelines, que buscaba promover la seguridad de las marcas anunciantes, garantizando que sus anuncios no aparecían en un contexto de contenido inadecuado. El programa QAG incluía posibilidades de certificación para todo tipo de agentes en la cadena de valor de la publicidad digital, desde redes y exchanges publicitarios hasta publishers, supply side platforms (SSPs), demand side platforms (DSPs) y agency trading desks (ATDs).

Las Quality Assurance Guidelines sirven como un marco de autorregulación que garantiza a los anunciantes que sus marcas están seguras, aumenta el control de los anunciantes sobre la ubicación y el contexto de sus anuncios y ofrece transparencia al mercado estandarizando la información que fluye entre los agentes, al proporcionar un lenguaje claro y común que describe las características del inventario publicitario y de las transacciones a través de la cadena de valor.

Esencialmente la taxonomía contextual sirve para etiquetar contenidos y se compone de unos niveles 1 y 2 estándar -que especifican respectivamente la categoría general del contenido y una serie de subcategorías anidadas dentro de esa categoría principal- y de unos niveles 3 y siguientes que pueden ser definidos por cada organización. Las siguientes figuras presentan dichos niveles estándar.

Continuar leyendo


Un análisis de sentimiento totalmente a tu medida con nuestra nueva herramienta de personalización

La adaptación al dominio es lo que marca la diferencia entre un análisis de sentimiento bueno y uno excepcional. Hasta ahora las posibilidades de adaptar el análisis de sentimiento de MeaningCloud a tu contexto se cifraban en utilizar diccionarios personales -para crear nuevas entidades y conceptos que la API de Sentiment Analysis utilizara para realizar su análisis basado en aspectos- o en solicitar a nuestro departamento de Servicios Profesionales que desarrollara un modelo de sentimiento a tu medida.

Sentiment Models buttonCon la publicación de Sentiment Analysis 2.1 incorporamos una nueva herramienta de personalización orientada a la creación de modelos de sentimientos personales. Esta herramienta utiliza a fondo nuestra tecnología de Procesamiento del Lenguaje Natural para permitiros ser autónomos y desarrollar -sin necesidad de programar- potentes motores de análisis de sentimiento adaptados a vuestras necesidades.

Otras herramientas para personalizar el análisis de sentimiento disponibles en el mercado permiten esencialmente definir “bolsas de palabras” con polaridad positiva o negativa. Nuestras herramientas van mucho más allá y hacen posible

  • Definir el papel de una palabra como vector de polaridad (contenedor, negador, modificador), permitiendo usar lemas para incorporar fácilmente las variantes de cada palabra
  • Especificar casos particulares de la polaridad de una palabra, dependiendo del contexto en el que aparece o de la función morfosintáctica que desempeña en cada caso
  • Definir expresiones multipalabra como elementos prioritarios en la evaluación de polaridad
  • Gestionar el modo en que estos modelos personales de polaridad complementan o sustituyen a los diccionarios generales de cada idioma.

Continuar leyendo


Introducción al análisis de sentimientos (minería de opiniones)

En la última década, el análisis de sentimientos (SA, sentiment analysis), también conocido como minería de opiniones (opinion mining), ha despertado un creciente interés. Resulta un gran reto para las tecnologías del lenguaje, ya que obtener buenos resultados es mucho más difícil de lo que muchos creen. La tarea de clasificar automáticamente un texto escrito en un lenguaje natural en un sentimiento positivo o negativo, opinión o subjetividad (Pang and Lee, 2008), es a veces tan complicada que incluso es difícil poner de acuerdo a diferentes anotadores humanos sobre la clasificación a asignar a un texto dado. La interpretación personal de un individuo es diferente de la de los demás, y además se ve afectada por factores culturales y experiencias propias de cada persona. Y la tarea es aún más difícil cuanto más corto sea el texto, y peor escrito esté, como es el caso de los mensajes en redes sociales como Twitter o Facebook.

Continuar leyendo