Category Archives: APIs

Posts about Meaningcloud’s APIs.

The Text Proofreading API moves to Stilus

Even since the very beginnings of MeaningCloud, we have offered a Text Proofreading API in Spanish which allow you to standardize and ensure the quality of your contents through spelling, grammar and style proofreading.

Stilus logo

On the 2nd of April, we will definitely move this API and its functionality to Stilus, an application where we take advantage of the functionality provided by the API and show everything you can do with it.

To those of you who currently use it, the migration process can be done in three easy steps:

  1. Register at Stilus.
  2. Contact us at support telling us about your volume requirements and which Stilus user would use the API. We will inform you of the conditions and tell you how to subscribe to the API.
  3. Once you have subscribed, you will only have to change the API endpoint and the key parameter value in your integration, and you will be all set to keep using the Text Proofreading API.

If you’d rather use directly the text proofreading functionality online or from Word, check out all the ways in which you can use Stilus!


Applying text analytics to financial compliance

In one of our previous posts we talked about Financial Compliance, FinTech and its relation to Text Analytics. We also showed the need for normalized facts for mining text in search of suspects of financial crimes and proposed the form SVO (subject, verb, object) to do so.

financial crime

Financial crime

Thus, we had defined clause as the string within the sentence capable to convey an autonomous fact. Finally, we had explained how to integrate with the Lemmatization, PoS and Parsing API in order to get a fully syntactic and semantic enriched JSON-formatted tree for input text, from which we will work extracting SVO clauses.

In this post, we are going to continue with the extraction process, seeing in detail how to work to extract those clauses from the response returned by the Parsing API.

Continue reading


MeaningCloud Release: new Deep Categorization API

This is what we’ve included in MeaningCloud’s latest release:

  • New Deep Categorization API: we are happy to present the first of our Premium APIs, Deep Categorization 1.0, which lets you carry out an in-depth categorization of your data. In this initial release, we’ve included predefined models for analyzing the Voice of the Customer in several domains and the Voice of the Employee.
  • Language Identification 1.1: we say goodbye to Language Identification 1.0, so if you are still using it, you will need to migrate to the newest version. If you are using it through the Excel add-in, we’ve done it for you, so you just have to update your Excel add-in to the latest version.
  • New language for Text Clustering: we’ve added Catalan to the languages supported in the Text Clustering API.
  • General usability improvements: mainly in the developer area of the website.
New NeaningCloud release

Continue reading


MeaningCloud Release: new Language Identification API and more

As we recently advanced, during these last few months we have been working on new functionality. We are planning to start releasing it over the next few months.

In the latest release of MeaningCloud we have included some of this functionality:

Continue reading


What is the Voice of the Employee (VoE)?

Voice of the Employee. Silhouettes with bubbles representing dialog

Finding committed employees is one of public and private organizations’ top priorities. Thus, listening to the Voice of the Employee by systematically collecting, managing and acting on the employee feedback on a variety of valuable topics is essential.

The relationship between Voice of the Employee (VoE) and Engagement is very similar to the one between Voice of the Customer (VoC) and Customer Experience. VoC provides information to improve customer experience. Voice of the Employee promotes employees’ engagement in the company and their work. See: Voice of the Employee, Voice of Customer and NPS

Voice of the Employee collects the needs, wishes, hopes, and preferences of the employees of a given company. VoE considers specific needs, such as salaries, career, health, and retirement, as well as implicit requirements to satisfy the employee and gain the respect of colleagues and managers.
Continue reading


Recorded webinar: When to use the different Text Analytics tools?

Last February 9th we presented our webinar “Classification, topic extraction, clustering… When to use the different Text Analytics tools?”. Thank you all for your interest.

During the session we covered the following agenda:

  • An introduction to Text Analytics.
  • Which application scenarios can benefit most from Text Analytics? Conversation analysis, 360° vision, intelligent content, knowledge management, e-discovery, regulatory compliance… Benefits and challenges.
  • What are the different Text Analytics functions useful for? Information extraction, categorization, clustering, sentiment analysis, morphosyntactic analysis… Description, demonstration and applications.
  • What features should a Text Analytics tool have? Is it all a question of precision? How to enhance quality?
  • A look at MeaningCloud’s roadmap.

IMPORTANT: The data analyzed during the webinar can be found in this tutorial.

Interested? Here you have the presentation and the recording of the webinar.

(También presentamos este webinar en español. Tenéis la grabación aquí.)
Continue reading


Text Analytics & MeaningCloud 101

One of the questions we get most often at our helpdesk is how to apply the text analytics functionalities that MeaningCloud provides to specific scenarios.

Users know they want to incorporate text analytics into their processes but are not sure how to translate their business requirements into something they can integrate into their pipeline.

If you add the fact that each provider has a different name for the products they offer to carry out specific text analytics tasks, it becomes difficult not just to get started, but even to know exactly what you need for your scenario.

homer-simpson-confused

In this post, we are going to explain what our different products are used for, the NLP (Natural Language Processing) tasks they are tied to, the added value they provide, and the requirements they fulfill.

Continue reading


Classification, topic extraction, clustering… When to use the different Text Analytics tools? (webinar)

How to leverage Text Analytics technology for your business

Text AnalyticsMost valuable information for organizations is hidden in unstructured texts (documents, contact center interactions, social conversations, etc.). Text Analytics helps us to structure such data and turn it into useful information. But which text analytical tools are the most appropriate for each case? When should I use information extraction, categorization, or clustering? Which applications can benefit most from Text Analytics? What are the challenges?

Register for this MeaningCloud webinar on Wednesday, February 8th at 9:00 PDT and discover answers to these and other questions through practical examples.

UPDATE: this webinar has already taken place. See the recording here.

(Este webinar también se realizó en español, ver la grabación aquí.)