Category Archives: APIs

Posts about Meaningcloud’s APIs.

Text Analytics for the Contact Center of the Future

The contact center is a crucial component of the customer experience and increasingly incorporates more channels based on unstructured information. In this post we analyze how advanced semantic analysis can be used to get the most out of the contact center of the future.

The Rise of the New Contact Center

Interest in the contact center has multiplied by its greater role as an essential component of the customer experience. New interaction channels (bots, chats, social) add to the traditional email and telephone and enable innovative ways to connect with clients in both inbound and outbound contact centers, both internal to companies of all types and in those operated by BPO vendors to provide outsourced services.

In this way, the contact center (traditionally known as call center) has ceased to be a cost center to become a tool for proactively communicating with and understanding the market, for multichannel business development and for generating value for the company.
Continue reading


Case Study: Text Analytics against Fake News

Everybody has heard about fake news. Fake news is a neologism that can be formally defined as a type of yellow journalism or propaganda that consists of deliberate disinformation or hoaxes spread via traditional print and broadcast news media or online social media. It is also commonly used to refer to fabricated or junk news, with no basis in fact, but presented as being factually accurate.

The reason for putting someone’s efforts in creating fake news is mainly to cause financial, political or reputational damage to people, companies or organizations, using sensationalist, dishonest, or outright fabricated headlines to increase readership and dissemination among readers using viralization. In addition, clickbait stories, a special type of fake news, earn direct advertising revenue from this activity.

Continue reading


Liberty Shared: how an NGO uses Text Analytics

Liberty Shared[EDITOR’S NOTE: This is a guest post by Xinyi Duan, Director of Technology and Data Research at Liberty Shared.]

Liberty Shared is committed to ensuring that the experiences of vulnerable and exploited workers around the world is represented in our markets, legal systems, and information infrastructures. To do this, we have to take on the daunting task of wrangling some of the messiest data that have been previously un-mined and unstructured.

MeaningCloud has enabled us to quickly and effectively deploy NLP techniques to tackle these problems, and it works easily for team members who are using NLP statistical models already to those without that technical background. It is also powerful enough to grow with our programs. As we learn more about the problem, it is easy to update the models to reflect our learnings.

Continue reading


Invoking the MeaningCloud Sentiment Analysis API from Minsait’s Onesait Platform

Minsait’s Onesait Platform is an IoT & Big Data Platform designed to facilitate and accelerate the construction of new systems and digital solutions and thus achieve the transformation and disruption of business. Minsait is a brand of Indra: its business unit addressing the challenges posed by digital transformation to companies and institutions.

Minsait has published a post about the procedure to invoke an external API from the integrated flow engine of the Onesait Platform (formerly known as Sofia2).

MeaningCloud integrated with Minsait Onesait Platform

The post titled HOW TO INVOKE AN EXTERNAL REST API FROM THE SOFIA2 FLOW ENGINE? uses as an example the integration of MeaningCloud Sentiment Analysis API (in Spanish).

The article illustrates one of the strengths of MeaningCloud: how easy it is to integrate its APIs into any system or process.


Recorded webinar: Solve the most wicked text categorization problems

Thank you all for your interest in our webinar “A new tool for solving wicked text categorization problems” that we delivered last June 19th, where we explained how to use our Deep Categorization customization tool to cope with text classification scenarios where traditional machine learning technologies present limitations.

During the session we covered these items:

  • Developing categorization models in the real world
  • Categorization based on pure machine learning
  • Deep Categorization API. Pre-defined models and vertical packs
  • The new Deep Categorization Customization Tool. Semantic rule language
  • Case Study: development of a categorization model
  • Deep Categorization – Text Classification. When to use one or the other
  • Agile model development process. Combination with machine learning

IMPORTANT: this article is a tutorial based on the demonstration that we delived and that includes the data to analyze and the results of the analysis.

Interested? Here you have the presentation and the recording of the webinar.

(También presentamos este webinar en español. Tenéis la grabación aquí.)
Continue reading


Case study on the voice of the patient for the Pharma industry

Pharmaceutical companies are extending their Voice of the Patient projects to include social media: comments on web forums, surveys, Twitter, and more.

The goal of the proof of concept ordered by one particular pharmaceutical company in Spain was to: ” Collect and analyze the voice of the patient, both quantitatively and qualitatively, from the channels where it is expressed”, including social networks like web forums, Facebook, Twitter, and other systems.

For the pharma industry, it is essential to listen and understand the feedback that their current and potential customers communicate through various means and touchpoints.

Web forums, for instance, gather millions of posts, and function as a meeting point for patients where support, experiences, and wisdom are shared with peers, family members, and friends.

Continue reading


Text analytics explained: MeaningCloud in Italian

In previous posts we spoke about text analysis performed in French and Portuguese. Today we’re wrapping up this linguistics series by discussing the analyses that can be done with Italian texts.

Italian is spoken in several European countries such as Italy, San Marino and Switzerland, totaling almost 70 million speakers. As Italians have migrated all over the world, its language is also present on the other side of the pond. In South America, for instance, it is the second most spoken language in Argentina. In the US, even though it is not an officially spoken language, many of its citizens are of Italian descendent and thus speak the language at home. We wanted to include such a widely spread language in our Standard Languages Pack.

Hello in many languages

Similarly to our previous posts, we are going to explain, in a linguistically-inclined way, what Text Analytics is and which functionalities MeaningCloud provides in Italian.

Continue reading


Text analytics explained: MeaningCloud in Portuguese

A few weeks ago we talked about MeaningCloud’s text analytics performance on French texts. Now it’s Portuguese time!

Portuguese, together with Spanish, has an enormous presence in South America. It is spoken by more than 200 million people in Brazil alone. Not only does it have an immense influence on the economy in South America but throughout Europe too, where it is used by more than 10 million speakers. Africa also has Portuguese-speakers. Angola, which has a population of more than 24 million people, recognizes Portuguese as their official language. Its presence in these three continents makes it hard to miss in our Standard Languages Pack. At MeaningCloud, we offer two Portuguese varieties: Brazilian Portuguese and European Portuguese.

Hello in many languages

Whether the concept “Text Analytics” sounds rather hazy or you are looking for something more specifically language-related, this post is for you. We keep in mind the language diversity and we want to show you all the functionalities we provide in Portuguese.

Continue reading


Text analytics explained: MeaningCloud in French

Due to the rise of Natural Language Processing technologies, Text Analytics is on everyone’s lips. However, most services in this field are provided in English and, depending on the language you are interested in, it can become difficult to find the functionality you are looking for.

No worries. French, for instance, is a language not only used in all the five continents and with almost 300 million of speakers, but is also either the first or the second language of communication in many international organizations [1]. No wonder why we have it as a part of our Standard Languages Pack!

Hello in many languages

Whether the concept “Text Analytics” sounds rather hazy or you are looking for something more specifically language-related, this post is for you. We keep in mind the language diversity and we want to show you all the functionalities we provide in French.

Continue reading


The Text Proofreading API moves to Stilus

Even since the very beginnings of MeaningCloud, we have offered a Text Proofreading API in Spanish which allow you to standardize and ensure the quality of your contents through spelling, grammar and style proofreading.

Stilus logo

On the 2nd of April, we will definitely move this API and its functionality to Stilus, an application where we take advantage of the functionality provided by the API and show everything you can do with it.

To those of you who currently use it, the migration process can be done in three easy steps:

  1. Register at Stilus.
  2. Contact us at support telling us about your volume requirements and which Stilus user would use the API. We will inform you of the conditions and tell you how to subscribe to the API.
  3. Once you have subscribed, you will only have to change the API endpoint and the key parameter value in your integration, and you will be all set to keep using the Text Proofreading API.

If you’d rather use directly the text proofreading functionality online or from Word, check out all the ways in which you can use Stilus!