Category Archives: MeaningCloud

This category groups the different aspects of MeaningCloud we talk about in the blog.

We The Humans: Artificial Intelligence for social good

MeaningCloud partners with the think tank “We the Humans“, sponsoring the challenge “Artificial Intelligence for social good”.

The mission of “We the Humans” consists in:

  • Encouraging the social debate about the correct use and development of Artificial Intelligence.
  • Bringing these concerns to the public agenda.
  • Supporting organizations in the development and adoption of an ethical AI.


We The Humans Think Tank

The specific objectives of this non-profit organization are:

  • Generate knowledge about the ethical challenges of new technologies.
  • Raise awareness in society about current ethical challenges.
  • Encourage the creation of solutions to these challenges (codes of conduct, regulation, keys to an ethical-technological design, etc.)

The challenge, open until October 4th, 2019, consists of two categories (Entrepreneurs and Startups), and four topics (Health, Sustainability, Vulnerable groups, and Labor insertion). The winner of each of the two categories will receive an economic prize of 3,000 euros, as well as technological credits, mentoring and incubation. The challenge is limited geographically to initiatives promoted in Spain. For further information and registration, consult the webpage “Concurso IA con fines sociales“.

MeaningCloud provides Text Analytics plans at no cost to all the participants in the challenge, plus upgraded plans for the following six months for the winners. It’s an honor collaborating with We the Humans in this excellent initiative.

 


Invoking the MeaningCloud Sentiment Analysis API from Minsait’s Onesait Platform

Minsait’s Onesait Platform is an IoT & Big Data Platform designed to facilitate and accelerate the construction of new systems and digital solutions and thus achieve the transformation and disruption of business.

Minsait has published a post about the procedure to invoke an external API from the integrated flow engine of the Onesait Platform (formerly known as Sofia2).

MeaningCloud integrated with Minsait Onesait Platform

The post titled HOW TO INVOKE AN EXTERNAL REST API FROM THE SOFIA2 FLOW ENGINE? uses as an example the integration of MeaningCloud Sentiment Analysis API (in Spanish).

The article illustrates one of the strengths of MeaningCloud: how easy it is to integrate its APIs into any system or process.

 

 

 

 


Recorded webinar: Solve the most wicked text categorization problems

Thank you all for your interest in our webinar “A new tool for solving wicked text categorization problems” that we delivered last June 19th, where we explained how to use our Deep Categorization customization tool to cope with text classification scenarios where traditional machine learning technologies present limitations.

During the session we covered these items:

  • Developing categorization models in the real world
  • Categorization based on pure machine learning
  • Deep Categorization API. Pre-defined models and vertical packs
  • The new Deep Categorization Customization Tool. Semantic rule language
  • Case Study: development of a categorization model
  • Deep Categorization – Text Classification. When to use one or the other
  • Agile model development process. Combination with machine learning

IMPORTANT: this article is a tutorial based on the demonstration that we delived and that includes the data to analyze and the results of the analysis.

Interested? Here you have the presentation and the recording of the webinar.

(También presentamos este webinar en español. Tenéis la grabación aquí.)
Continue reading


Tutorial: create your own deep categorization model

As you have probably know by now if you follow us, we’ve recently released our new customization console for deep categorization models.

Deep Categorization models are the resource we use in our Deep Categorization API. This API combines the morphosyntactic and semantic information we obtain from our core engines (which includes sentiment analysis as well as resource customization) with a flexible rule language that’s both powerful and easy to understand. This enables us to carry out accurate categorization in scenarios where reaching a high level of linguistic precision is key to obtain good results.

In this tutorial, we are going to show you how to create our own model using the customization console: we will define a model that suits our needs and we will see how we can reflect the criteria we want to through the rule language available.

The scenario we have selected is a very common one: support ticketing categorization. We have extracted (anonymized) tickets from our own support ticketing system and we are going to create a model to automatically categorize them. As we have done in other tutorials, we are going to use our Excel add-in to quickly analyze our texts. You can download the spreadsheet here if you want to follow the tutorial along. If you don’t use Microsoft Excel, you can use the Google Sheets add-on.

The spreadsheet contains two sheets with two different data sets, the first one with 30 entries, the second one with 20. For each data set, we have included an ID, the subject and the description of the ticket, and then a manual tagging of the category it should be categorized into. We’ve also added an additional column that concatenates the subject and the description, as we will use both fields combined in the analysis.

To get started, you need to register at MeaningCloud (if you haven’t already), and download and install the Excel add-in on your computer. Here you can read a detailed step by step guide to the process. Let’s get started! Continue reading


New Release: Deep Categorization Customization Console

One of the APIs that has had more “movement” lately in our updates is the Deep Categorization API, which — as many of you already know — provides an easier, more flexible and precise way to categorize texts. Most of this movement has come in the form of new supported models such as Intention Analysis, as well as many under-the-hood improvements.

We are happy to announce that we have finally released the Deep Categorization customization console in our web.

This console will allow you to create accurate models for those scenarios where you need a very high level of linguistic precision to differentiate between the different categories you want to detect.

MeaningCloud release

Continue reading


Case study on the voice of the patient for the Pharma industry

Pharmaceutical companies are extending their Voice of the Patient projects to include social media: comments on web forums, surveys, Twitter, and more.

The goal of the proof of concept ordered by one particular pharmaceutical company in Spain was to: ” Collect and analyze the voice of the patient, both quantitatively and qualitatively, from the channels where it is expressed”, including social networks like web forums, Facebook, Twitter, and other systems.

For the pharma industry, it is essential to listen and understand the feedback that their current and potential customers communicate through various means and touchpoints.

Web forums, for instance, gather millions of posts, and function as a meeting point for patients where support, experiences, and wisdom are shared with peers, family members, and friends.

Continue reading


MeaningCloud Release: Sentiment + Nordic Pack

Not long ago we published the first of our Language Packs: the Nordic pack, which includes several text analytics tasks in Swedish, Danish, Norwegian and Finnish.

Among the text analytics tasks supported, there’s one that was missed by many of you: Sentiment Analysis API. Well, no more!

We are happy to announce that from now on you can also analyze sentiment in the four languages included in the Nordic pack. And what’s more, for those of you that are already subscribed to the pack, it has been automatically included and so you can start using it right away without any change in pricing.

MeaningCloud release

For those of you that are not subscribed to the Nordic pack, remember that you can test all our packs full functionality by requesting a 30 day period trial. It’s super easy!

Continue reading


MeaningCloud participates in T3chFest 2019

This year MeaningCloud participates in T3chFest, the technology fair in University Carlos III de Madrid.

T3chFest was born as a show of the research works made in the Department of Informatics. Today, the event has become a reference in Spain’s technology scene. In the last edition 1600 people attended to more than 80 talks.

This year we have submitted a call titled “NLP for Small Data“, where we review the state of the art in the Natural Language Processing. We will also discuss the advances in Deep Learning and the usage of Linguistic Models.

The talk will be presented by two members of our Linguistics team: Concepción Polo, Director of Linguistics, and María José García, computational linguist. They are actively involved in every linguistic model in all our products, from the initial model sketch to its final fine tuning.

Continue reading


Text analytics explained: MeaningCloud in Italian

In previous posts we spoke about text analysis performed in French and Portuguese. Today we’re wrapping up this linguistics series by discussing the analyses that can be done with Italian texts.

Italian is spoken in several European countries such as Italy, San Marino and Switzerland, totaling almost 70 million speakers. As Italians have migrated all over the world, its language is also present on the other side of the pond. In South America, for instance, it is the second most spoken language in Argentina. In the US, even though it is not an officially spoken language, many of its citizens are of Italian descendent and thus speak the language at home. We wanted to include such a widely spread language in our Standard Languages Pack.

Hello in many languages

Similarly to our previous posts, we are going to explain, in a linguistically-inclined way, what Text Analytics is and which functionalities MeaningCloud provides in Italian.

Continue reading